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A new hypothesis on temperature distribution with respect to the thickness o fa  multilayeredplate is proposed. 
An analytical solution of  the unsteady-state heat conduction problem is obtained for  rectangular multilayered 
orthotropic plates. 

To determine temperature fields in multilayered structures, different hypotheses on temperature distribution with respect 

to a multilayered plate are widely used. Such an approach makes it possible to reduce an initial three-dimensional problem to 

a two-dimensional one. Most often the hypothesis on a piecewise-linear temperature distribution is employed [2]. For a more 
accurate description of a temperature field, the polynomial law is used [2], while in [3] the temperature distribution with respect 
to a thickness is approximated by Legandre polynomials. In this case, the order of the system of resolving equations depends 

on the degree of the polynomial [2] or the number of layers [3]. In [4], a nonlinear law is proposed. However the aspects of 
a rational choice of hypothesis allowing a description of the internal thermal condition of multilayered systems are insufficiently 
developed. 

Consider a plate composed of an arbitrary quantity (k = 1, 2 ..... n) of orthotropic layers. Contact surfaces of the layers 
are determined by z-coordinates of ak_ 1 and ak(a k > ak_l) counted off an arbitrarily chosen coordinate plane XlOX 2 up to the 
lower and upper boundaries of a layer k. The summation is to be made with respect to dummy indices j, p, but no summation 

is taken over i = 1, 2; k, m. Partial derivatives of the coordinates are designated with commas on the level of subscripts, while 
a time derivative -- by a point above the function. Superscripts, unlike exponents, are bracketed. 

A heat conduction equation for the k-th layer is of the form [5] 

: :  ; ' C T ' . ) }  (i :: ' ,  2, s: ,,; i )  ( i )  

where Xp (k) are thermal conductivities in the direction of the coordinate axes xl, x 2 and x 3 = z; Cv (k) is the volumetric heat 
capacity. Between the plate layers, the following ideal thermal contact conditions are satisfied 

T(h--1) t =: ~& 1). U~-]) = ~t::i>r-~':), t+ T i ' ~  - 3  T 3 !i J~, t , ,~ t ._ .  

Here signs "+"  and "-" designate the upper and lower boundaries of layers, respectively. 
On the plate faces (z = ap), the boundary conditions [5]: 
of the first kind 

(2) 

T(;> (x~, ao, "0 --- To (xi, T); T u:i (&, a,~, "0 = T,, (xi, ~); (3) 

of the second kind 

(4) 
) (I)'7~(D qT) 
~3 1 ; 3  (X i, t2 o, : : q 0 ( X i ,  x); ~v3/n>"~'~l, 3 (xi, a,,, -c) =: q,, (xi, ~): 

of the third kind 

Kiev Motor-Car and Road Institute, Ukraine. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 63, No. 4, pp. 
486-491, October, 1992. Original article submitted July 9, 1991. 

1050 1062-0125/92/6304-1050512.50 01993 Plenum Publishing Corporation 



L~I)T{~) (xi, a~, T)=%[T(~)(xi ,  ao, T)--T(c~ (x~, ~)1; 

),~'+)T(.~a ) (xi ,  a,,, -r) = a,~ [T (< (xi ,  aT,, +c) - -  r(r ") (xi ,  "c)]. 
(5) 

may be set. In the relations (3)-(5), ap, Te(P), qp(p = 0, n) are heat transfer coefficients, ambient temperature, and heat fluxes 

on the plate faces, respectively. Boundary conditions, analogous to (3)-(5), may be also prescribed along the plane contour. 

The initial conditions for the differential equation (1) are 

T (~> (x~, z, %) F<o h> (x~, z), (6) 

where Fo(k)(xi, z) is the given function describing the temperature distribution over the plate at the initial moment of time r 

= ' g O "  
To reduce the three-dimensional heat conduction problem to the two-dimensional one based on the approach [4], a 

hypothesis on temperature distribution with respect to the plate thickness is built. Initially, it is assumed that the temperature 

distribution obeys the piecewise-linear law [1] 

7" ('~) On, z, ~)=:  x,~ (x,, ~ ) f~) (z )  (p = 1, 2), 

where rt(xi, r) = To(x i, r) and ~2(xi, r) = Tn(Xi, "r) are the temperatures on the plate faces: 

(,t,) 1 a ?? 
f~")  ( 2 ) : :  ,i [)v:~ ] - d z / ! "  [ )v !~ ' ) ] - l dz ;  f ~ h ) ( 2 )  : I - -  f ~ ) ( z )  

oc, d o 

(7) 

(8) 

are the given functions of  the normal. 

Substitution of  the law (7) into the 1.h.s. of  the one-dimensional unsteady-state heat conduction equation 

. : "~ ~ , 33, 

subsequent integration with regard for interlayer contact conditions (2) and conditions on the plate faces (3) as well as 

replacement of  the derivatives of  temperature with respect to time by new desired functions [To(xi, r) = > r3(xi, r); Tn(x i, 

7-) = r4(xi, r)] have allowed the temperature distribution with respect to a stack thickness to be written in the form: 

7'~:') (xi, z, ' r )  = ~v (.'c~, T) tv ~ , .  (10) 

Henceforth p = 1, ..., 4. The functions of  the temperature distribution with respect to the thickness f(k)(z) (j = 3, 4) within 

each layer are the cubic parabolas and determined by the expressions 

f?> (~) = d ?  ~ --f,',"~D~; D ?  ~ = al ~ (~); 

,~(,~) ~ ~ _ (11) 

Oo a0 

Using a variation technique, with the hypothesis (10) taken into account, we have derived a system of  differential heat 

conduction equations which are as follows in a matrix form 

[D] {2}.- -[12] {Z} = {q}, (12) 

where [D] is the matrix of  differential operators, the elements of  which are 

d J1, =: P~/") (-..),11 ~- - (...t,2e .... *-a t.-q (J = 1, ..., 4); 

du  = as, - -  a0 (...); &.2 = d~2 - -  a~ (...); 
(13) 
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TABLE 1. Temperature Distribution with Respect to Thickness at the Center of  a 
Three-layered Orthotropic Plate 

Time~ 
see 

300 �9 

500 

1000 

3000 

I 
Z. Ill 

--0,02 
--9,01 

0,01 
0,02 

--0,02 
--0,0l  

n,Ol 
, ,02 

--, ,02 
--, ,01 

, 0 1  
, 02  

- - I  , 02  
--q ,01  

,01  
I ,02  

--~ , 02 
--0,01 

0,01 
0,02 

Proposed 
solution 

t T. oc [ a, % 

43,04 
19,87 
2,86 
2,85 

50,72 
28,76 
7,73 
6,39 

62,19 
43,10 
21,26 

,18,69 
82,91 
70,46 
54,25 
50,55 

94,40 
85,70 
72,95 
68,67 

H y p o t h e s i s  (7) 

i 
T, ~ I ~" % 

36,~"5 16,3 
25,26 -27,8 
3,07 -410-9,0 

-8,02 
46,04 10, l 
33,80 
9,33 

-2,91 
59,28 5,4 
47,80 -10,9 
24,85 -19,2 
13,37 26,7 
82,79 0,4 
74,80 --6,3 
58,59 --8,9- 
50,49 --0,9 
94,t5 0,3 
87,68 --2,3 
74,76 --2,6 
68,29 0,6 

Hypothesis [/~] 

I 

42,w 
19,87 
2,92 
2,73 

50,73 
28,77 
7,77 
6,39 

62,19 
43,11 
21,27 
18,69 
82,91 
70,46 
54,26 
50,55 
94,40 
85,70 
72,95 
68,67 

Three-d'- 
mension 
solutio 

T, ~ 

43,41 
19,76 
2,74 
2,6l 

51,21 
28,73 
7,47 
6,13 

62,63 
43,11 
20,84 
18,24 
83,14 
70,39 
53,81 
50,03 
94,40 

85,70 
72,95 
68,67 

[C] is the matrix characterizing heat capacity of the system; (Cjp = Rip); {X} = {Xp} is the vector of the desired functions; 

{q}={qo--%T~(~ q,~--~hl~ ; 0; 0} (14) 

is the vector of thermal impact. 
From the contour integral of the variational equation we obtain the corresponding boundary conditions 

(D(Pi).v . --.~n m , m  + Q p  + G p / ~ j  - -  YpT(e T)) 6~p = 0 (] = l,  ..., 4), (15) 

where m is the normal to the contour; Tefr) is the ambient temperature at the boundary with the end faces of the plate. 
In (13), (15), the generalized integrated thermophysical characteristics of a multilayered plate are introduced to describe 

heat transfer by conduction: 

(J/z GFL 

P(IP) S 2"(~)r p(iP) ~ ~(."4r~k),~(h) A,. i = i I f  [P Z; 3 = ~ 1~'3 l i ,31p.3 u'~, 

at) ao 

(16) 

thermal inertia 

a~z 

Rip i A(~)~fk)o(h). �9 . Cv /-i [p aZ, 
(17) 

as well as the boundary conditions at the end faces of the plate: 

Qg = .i" q~)fl k)dz; Yj = ,!" ~x~h)f}~)dz; 
ao ao 

(18) 

ar~ 

Gjp  f #k):(~.)~(h). = ~ r  # f p  az ( ] = I ,  ..., 4). 
ao 

(19) 
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Fig. 1. Temperature distribution in time at the central point 
of the five-layered orthotropic plate. T, ~ r, sec. 

In (18) and (19), aT (k) and qr (k) are the heat transfer coefficients and heat fluxes across the end faces of the plate. 
The overall order of the system (12) does not depend on the number of layers and is equal to eight. On each edge of 

the plate, four boundary conditions (15) at once must be satisfied. 

Consider an analytical solution of the system (12) for a rectangular (a I x a2) layered plate, along the contour of which 

a zero temperature is maintained. 
On the plate faces, the following thermal impact conditions may be prescribed 

�9 . . ,  sin (~.xl) sin (~&); 
_ . , a  

,. , (20)  

�9 s 

m 

where cr = r~-/ai; / ~ =  s~r/a2; qj, Tc (j) are the given functions of time; Urs0), Vrs (j) are the Fourier coefficients for series 
expansion of thermal impacts. 

To satisfy the conditions along the contour, the distribution of the desired functions over the plate is represented in the 

following form: 

Zp (x> I:) = %"~  a( ')  (~) sin (axl) sin (~x,,) (r, s := 1 3, 5 . . . .  ). 
- ~  . . . . .  ( 2 0  

r s 

Substitution of (20) and (21) into the system (12) yields a sequence of the systems of ordinary first-order differential 
equations with constant coefficients for the given pairs of r and s values: 

[H],., {A},~ q- [(;1,., {A}~,~ = { q},.~. (22) 

Here {A}r s = {Ars(P)(r)} is the vector of unknown coefficients; [I-I]rs, [C]r s are the heat conduction and heat capacity matrices 
obtained, according to (13), with regard for differentiation: 

{q}.. -- {-- qou;-s + ~oT~ ' v (~ - r~, --q,,u,.~ + ~  v~s, O, O} 
(23) 

is the vector of the r.h.s. 

Following [6], a solution of the system (22) is sought in the form 

{A}~ ~ {e}pyv, (24) 

where {e}p are the eigenvectors of the equation (),[C] + [H]) {e} = 0; yp = yp(r) are some new desired functions. The 

matrices [H] and [C] are the positive definite matrices and, consequently, all eigenvalues of hp will be real and negative. 
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Substituting (24) into the system (22) and multiplying both sides by the corresponding eigenvalues with allowance for 

their orthogonality, we arrive at the system of independent equations 

~ z , -  )~JYz, = {e}p{q} (] = P)- (25) 

The latter equations may be solved by traditional methods [7]. Integration constants are found from the initial conditions. 

The desired functions are determined according to (21) with account of (24). Then from (10) the temperature 
distribution with respect to the thickness is found at an arbitrary point of the k-th layer of the plate. 

Consider some examples illustrating the proposed approach. 

Example 1. An unsteady-state temperature field is to be determined in a three-layered (a --- a i = 0.4 m) plate at 

thermal impact, constant in time. On the plate contour, a zero temperature is maintained. The ambient temperature at the 
boundary with the plate faces varies according to the law 

~ = sin (~xl /a)  sin (~x2/a) (] = O, n), (26) 

where Te (~ = 20~ To(n) = 120~ Heat transfer coefficients are (%, %) = (10; 50) W/(m'K). The initial temperature 

distribution is assumed to be zero. Each layer represents a unidirectional-reinforced graphite-epoxy composite with the 

following characteristics: (Xl, k 2 = h3) = (2.7; 1.34) W/(m-K), its volumetric heat capacity is c v = 2.7 x 106 J/(m3.K). The 

layers are directed in turn at the angles 0 and 900 to the x 1 axis, the thickness of the layers is as follows: h k = (0.25; 0.5; 

0.25)h (k = 1, 2, 3), where h = 0.04 m is the total thickness of the plate. 

Results of solution of the given problem are listed in Table 1. As a standard solution, the three-dimensional 

finite-element solution is taken. As is seen, the results Obtained on the basis of the suggested model and the nonlinear law [4] 

are close and consistent with the three-dimensional solution. The piecewise-linear law allows reliable results to be obtained only 

for the moments of time, to which a temperature field distribution, close to a stationary one, corresponds. 

Example 2. A nonstationary temperature field in a five-layered plate (a = a i = 1.0 m) is exposed to time-variable 

thermal impact. The conditions along the contour and the initial temperature distribution are analogous to those in the previous 

example. A heat flux is supplied to a lower surface according to the law qo = ~ exp(-cor) where % = 100 W/m 2. On the 

upper surface, heat transfer by_ convection proceeds. The heat transfer coefficient is a n = 20 W/(m2.K), and the ambient 

temperature varies as T (n) = Te(n)exp(-wr), where Tc (n) = 200~ o: = 0.0075. A middle layer of the plate (k = 3) is 

fabricated from superlight foam plastic with the following characteristics: h 1 = X 2 = 0.04 W/(m.K), c v = 4170 J/(m31K). T h e  

remaining layers are made of glass-like transparent plastic. The characteristics of outer layers (k = 1.5) are as follows: (XI, 

h 2 = h3) = (0.672; 0.229) W/(m.K), c v = e v = 1.875 x 105 J/(m3-K). The layers k = 2, 4 are directed at an angle of 90 ~ 

with respect to the outer layers. A thickness of the layers is h k = (0.01; 0.01; 0.06; 0.01; 0.01) m (k = 1...5). 

Figure 1 represents the temperature distribution in time at the center of the plate at the upper layer boundaries (z = 

0.4 h and z = 0.5 h) obtained with the help of the proposed model (curves 1 and 2). Temperatures at the same points 

corresponding to law (7) are practically equal and therefore they are indicated by curve 3. 

Analysis of the results has shown that the proposed model allows a description of the thermal condition of layered 

structures practically with the same accuracy as the model [4] does. For numerical realization, it is reasonable to employ the 

method of finite elements. Relations (10) of the model include a smaller number Of desired functions (four instead of six), as 

compared to [4], that leads, correspondingly, to systems of resolving equations of a smaller order and considerably expands 
the range of problems to be solved. 

NOTATION 

kj (j = 1, 2, 3), thermal conductivities of the orthotopic body; Cv, volumetric heat capacity; T k (Xi, Z, 7), temperature 

at an arbitrary point of the k-th layer; %, t~p, Te(P) , heat flux, heat transfer coefficient, and ambient temperature on the lower 

(p = 0) and upper (p = n) plate surfaces, respectively. 
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